INDIAN SCHOOL MUSCAT

CHEMISTRY DEPARTMENT QUESTION BANK

Solutions

1.	Non-ideal solutions exhibit either positive or negative deviations from Raoult's 2			
	law. What are these deviations and how are they caused?			
2.	Define the term osmosis and osmotic pressure. Osmotic pressure method is more	2		
	advantageous in determining molar mass non-volatile solutes over other colligative			
	properties. Why?			
3.	100mg of protein is dissolved in just enough water to make a 10mL solution. If this	3		
	solution has an osmotic pressure of 13.3mm Hg at 25°C, what is the molar mass of			
	the protein? (Given: $R = 0.0821L$ atm K^{-1} mol ⁻¹ ,			
4.	What do you mean by abnormal molar mass? Explain the factors.	3		
5.	Define the following:	7x1		
	(i) mass %			
	(ii) volume %			
	(iii) normality			
	(iv) molarity			
	(v) molality			
	(vi) mole fraction			
	(vii) ppm			
6.	State:	5x1		
	(i) Henry's law			
	(ii) Raoult's law			
	(iii) Osmosis			
	(iv) Osmotic pressure			
	(v) Reverse osmosis			
7.	Give the relation between	2		
	a) solubility of gases and temperature b) solubility of gases and kH			

8.	Define	8x1			
	(i)	vapour pressure			
	(ii)	boiling point			
	(iii)	azeotropes			
	(iv)	colligative properties			
	(v)	ebullioscopic constant			
	(vi)	cryoscopic constant			
	(vii)	isotonic solutions			
	(viii)	Vant Hoff factor			
9.	Differentiate		4x2		
	(i)	substitutional and interstitial solutions			
	(ii)	ideal and non-ideal solutions			
	(iii)	negative and positive deviations to Raoult's law			
	(iv)	osmosis and diffusion			
10.	Show that relative lowering of VP is a colligative property 2				
11.	Benzei	3			
	hydrocarbons which nearly form an ideal solution. At 313 K , the VP of benzene				
	and tol	uene are 160 mm and 60 mm of Hg respectively. Assuming an ideal			
	behaviour, calculate the partial vapour pressures of benzene and toluene and the total pressure under the following conditions.				
	a] a so				
	b] a so	lution made by mixing 4 moles of toluene and 1 mole of benzene.			
	c] a solution made by mixing equal masses of benzene and toluene.				
12.	A solu	tion containing 2 gm of a non-volatile solute in 20 gm of water boils at	3		
	373.52 K. Find the molecular mass of the solute if kb for water is 0.52 K Kg/mole.				
13.	Calculate the elevation in Boiling point when 18 gm of glucose is added to 100 gm 3				
	of water if kb for water is 0.52 K Kg/mole				
14.	34.2 gr	m of sucrose is dissolved in 1000 gm of water. Find the freezing point of the	3		
	solution if kf for water is 1.86 K Kg/mole.				
15.	The no	ormal freezing point of nitrobenzene is 278.82 K. A 0.25 molal solution	3		
	contair	ning a non-volatile solute in it causes a depression in freezing point by 2 deg.			

Calculate the cryoscopic constant of nitrobenzene.

degree of dissociation in the acid in the solution.

16. An aqueous solution containing 0.1gm a monobasic acid in 2.17 gm of water freezes at 272.817 K. Calculate the molar mass of the acid if kf = 1.86 K Kg/mole
17. What is the i for the following solutions a] MgBr₂ b] K₄[Fe(CN)₆] c] AlCl₃ 3
18. Calculate the i value of a 0.5M acetic acid solution which is 35% dissociated.
19. A decimolarK₄[Fe(CN)₆] is 50% dissociated. Calculate the osmotic pressure at 298K.
20. 5 g of a solute of molecular mass 60 is dissolved in 100g of water. The depression 3 in freezing point is 2K.Calculate degree of dissociation if m= 2

21. A 0.1m solution of H₃PO₄ in water is observed to freeze at -0.24C. Determine the

3